Valencia Water
 Control District

Agenda

January 9, 2024

Agenda

AGENDA

January 9, 2024

VALENCIA WATER CONTROL DISTRICT BOARD OF SUPERVISORS MEETING
 1 P.M.
 LAKE RIDGE VILLAGE CLUBHOUSE
 10630 LARISSA STREET
 WILLIAMSBURG, ORLANDO, FLORIDA 32821

Item

1. Call Meeting to Order
2. Public Comment Period
3. Approval of November 14, 2023 Monthly Meeting Minutes
4. General Fund Financial Reports
5. Engineer's Report
A. Consideration of Permit \#0530 - Aquatica Parking Lot
B. Presentation of Sea World C-5 Canal Reconfiguration Study
6. Attorney's Report
7. Director's Report
A. Customer Call Log
B. Consideration of Proposals to Repair S-501 (Under Separate Cover)
8. Other Business
9. Adjournment

Minutes

MINUTES OF THE MONTHLY MEETING OF THE BOARD OF SUPERVISORS OF VALENCIA WATER CONTROL DISTRICT

November 14, 2023
The monthly meeting of the Board of Supervisors of VALENCIA WATER CONTROL DISTRICT was held at 1:00 P.M. on Tuesday, November14, 2023, at the Lake Ridge Village Clubhouse, 10630 Larissa Street, Orlando, Florida. Physically present were Supervisors Debra Donton, Roy Miller, and Brian Andrelczyk. Also, in attendance were the following: George Flint, District Director, Stephen Broome, District Counsel; David Mahler, District Engineer; Stacie Vanderbilt, District Administrative Assistant; Dan Brown, Sthern Environmental; Carolina MatizPardo, Atkins; Tom Burdeshaw, Ground LVL; and Jeff Schwartz, SeaWorld.

ITEM \#1

Call Meeting to Order

Mr. Flint called the meeting to order at 1:02 P.M. A quorum of three Board members were present.

ITEM \#2

Public Comment Period

No members of the public were present to provide public comment.

ITEM \#3

Approval of August 8, 2023 Annual
Meeting Minutes
Mr. Flint stated the next item was the minutes from the July 11, 2023 annual meeting. He asked if there were any corrections, deletions, or additions.

On MOTION by Ms. Donton, seconded by Mr. Andrelczyk with all in favor the Minutes from the August 8, 2023 Monthly Meeting were approved as presented.

Presentation by Sea World Orlando on

 C-5 Canal Design ConceptMr. Flint briefed the Board on the purpose of the presentation for the proposed project that would affect the C-5 Canal. District staff voiced concerns to Sea World, so the representatives wanted the opportunity to speak to the Board.

Mr. Burdeshaw was looking to the underground portion of the canal to expand the property and fully utilize it. Valencia's staff was concerned about the access and maintenance, so he studied bifurcating the site, but the best plan that they came up with was to completely underground it. This way there will not be any structures placed on it, only walkways and seating areas.

Mr. Flint pointed out on his map to the Board that the proposed area was.
Ms. Matiz-Pardo stated that they would be similar to the culverts under Central Florida Parkway. There will be several points of contact or box structures over it so the District could visually see the water and what was in it.

Mr. Schwartz stated we understand the concern of the Board and do not plan to sell the hotel property. We would continue to maintain and own the area. We're looking for the "nod" from the Board to continue with conceptual design, not construction, yet.

Mr. Flint stated the main reason for concern was that the culverts that run under Central Florida Parkway are owned and maintained by Orange County and the District has to deal with Orange County when there are failures. Entering into an agreement with a private entity like SeaWorld, is another area to make sure is properly maintained and failures are fixed. Worst case, if the economy were to go south and the property was abandoned, the burden would fall on the District to assume the cost of maintenance.

Mr. Mahler stated his concerns were the potential upstream flooding and tracking the maintenance and inspections. It would also require more NPDES obligations. Obstructions would also be harder to see to the naked eye because the box culverts cover up the open canal.

Mr. Miller asked where the box culverts are located, will there be manhole covers to go down and reach the water if need be? Where are the access roads?

Ms. Matiz-Pardo responded yes, there will be access and she pointed out the access roads on their plan.

Mr. Miller, Mr. Andrelczyk and Ms. Donton discussed the plan further.
Mr. Andrelczyk clarified with Mr. Flint that the Board is either recommending for Sea World to move forward with a conceptual design to cover and ground the C-5 Canal or telling them no, go back and provide a plan to leave the canal alone?

Mr. Flint responded yes, because District staff had enough concerns to have to bring them to the Board for discussion first and get direction.

Mr. Brown showed everyone on the map a way to go around and divert the flow of the C5 to other canals. Dig up one their parking lot and save costs.

Discussion amongst everyone ensued.
Mr. Mahler stated that the Water Management District and Orange County would still have to approve any changes or permits. The District does not hold that power.

Mr. Flint stated the concern is that the District has to contract with an on-site entity to maintain the culverts. If anything goes wrong and the owner abandons the project, the burden will be shouldered on the District. Similar situations happened with Marriott when their culvert failed and landscaping was lost. They approved the District to either fix it or ask how to fix it.

Mr. Andrelczyk suggested a motion to give SeaWorld direction, the Board is not opposed to move forward with the design concept with the plan that they leave it open.

Mr. Schwartz wanted to hear Mr. Miller and Ms. Donton's opinions.
Ms. Donton said she's concerned mainly about the maintenance. If something goes wrong, it can be catastrophic.

Mr. Miller stated he has the same concerns. With everything covered up, it will be difficult to see issues uprising and can cause bigger problems for the whole District. He understood what they are trying to do, but he would rather stay away from the grounded concept.

On MOTION by Mr. Miller, seconded by Mrs. Donton, to discourage the closed option and explore an option that keeps the canal open and divert the water around, with Mr. Andrelczyk abstaining, Motion Passed 2-1.

Mr. Schwartz, Mr. Burdeshaw and Ms, Matiz-Pardo thanked the Board for their time and said they would come back with a new design plan leaving the canal open. They left the meeting at this time.

ITEM \#5

General Fund Financial Reports
Mr. Flint stated it is the start of the new fiscal year so there are no collections yet, and the actuals are under prorations.

Engineer's Report

A. Acknowledgement of Plans for Repairs at Discovery Cove - Pond 13 Outfall

Mr. Mahler wanted on record that they are fixing issues that they have at the site,
there is no new permit needed.

B. Consideration of Permit \# 0529 - Discovery Cove Project Pink Lady

Mr. Mahler stated that Sea World was modifying the property, and there is no adverse affect to the District's system. He recommended approval.

On MOTION by Mr. Miller, seconded by Mrs. Donton, with all in favor, Permit \# 0529 - Discovery Cove Project Pink Lady, was approved.

Mr. Miller asked what is going on at the end of Central Florida Parkway by I-4?
Mr. Mahler responded they are changing the I-4 interchange, it is part of I-4 Ultimate project. It was taken out of the original plan and is now being worked on.

ITEM \#7

Attorney's Report

Mr. Broome had nothing new to report to the Board.
Mr. Flint added depending on the SeaWorld C-5 Canal project, easements and agreements will need to be done.

ITEM \#8

Director's Report

A. Customer Call Log

This log has a lot of callers because the Board hasn't met in a few months. We got a couple of calls regarding the C-6 in Deer Creek. Vegetation is coming in from Shingle Creek. In the past the area has been dredged and treated but it immediately comes back.
B. Consideration of Non-Ad Valorem Assessment Administration Agreement with Orange County Property Appraiser

On MOTION by Mr. Miller, seconded by Mr. Andrelczyk, with all in favor, the Non-Ad Valorem Assessment Administration Agreement with Orange County Property Appraiser, was approved.

There being none,

Adjournment

On MOTION by Mr. Andrelczyk, seconded by Debra Donton, with all in favor the meeting was adjourned at 1:59 pm.

Stephen F. Broome, Secretary

William Von Ingle

Amanda Whitney

Debra Donton

Roy Miller

Brian Andrelczyk

Section IV

Valencia
Water Control District

Unaudited Financial Reporting

December 31, 2023

Table of Contents

1 \qquad
Balance Sheet

2-3 General Fund Income Statement

4 \square

5 \qquad
Month to Month

6
Assessment Receipt Schedule

Valencia

Water Control District
Balance Sheet
December 31, 2023

	General Fund		Capital Reserve Fund		Totals Governmental Funds	
Assets:						
Current Assets						
Cash - Truist Bank	\$	259,948	\$	233,824	\$	493,772
Petty Cash	\$	100	\$	-	\$	100
Investment:						
State Board of Administration	\$	42,409	\$	802,153	\$	844,562
Total Current Assets	\$	302,457	\$	1,035,977	\$	1,338,434

Fixed Assets

Land	$\$$	700,120	$\$$	-	$\$$	700,120
Structures	$\$$	672,531	$\$$	-	$\$$	672,531
Canals	$\$$	$2,888,690$	$\$$	-	$\$$	$2,888,690$
Ponds	$\$$	$1,245,537$	$\$$	-	$\$$	$1,245,537$
Equipment \& Office Furniture	$\$$	6,703	$\$$	-	$\$$	6,703
Accumulated Depreciation	$\$$	$(4,789,183)$	$\$$	-	$\$$	$(4,789,183)$
Total Fixed Assets	$\$$	724,398	$\$$	-	$\$$	724,398
Total Assets						

Liabilities:

Accounts Payable	$\$$	-	$\$$	-	$\$$	-
Total Liabilities	$\$$	-	$\$$	-	$\$$	-

Fund Balances:

Unassigned
Net Assets Capitalized

Total Fund Balances	$\$$	$1,026,856$	$\$$	$1,035,977$	$\$$	$2,062,832$

Total Liabilities \& Fund Equity \$ 1,026,856 \$ 1,035,977 2,062,832

Valencia

Water Control District
General Fund
Statement of Revenues, Expenditures, and Changes in Fund Balance
For The Period Ending December 31, 2023

	Adopted		Prorated Budget		Actual			
	Budget		Thru 12/31/23		Thru 12/31/23		Variance	
Revenues:								
Assessments- Tax Roll	\$	552,179	\$	208,709	\$	208,709	\$	-
Interest	\$	2,000	\$	500	\$	598	\$	98
Total Revenues	\$	554,179	\$	209,209	\$	209,307	\$	98

Expenditures:
Administrative:

Supervisor Fees	\$	2,500	\$	625	\$	150	\$	475
Engineering Fees	\$	37,200	\$	9,300	\$	5,198	\$	4,103
Attorney Fees	\$	12,000	\$	3,000	\$	3,000	\$	-
Annual Audit	\$	5,200	\$	-	\$	-	\$	-
Assessment Roll Certification	\$	5,000	\$	5,000	\$	5,000	\$	-
ManagementFees	\$	53,280	\$	13,320	\$	13,320	\$	-
Information Technology	\$	1,800	\$	450	\$	450	\$	-
Website Maintenance	\$	1,200	\$	300	\$	300	\$	-
Insurance	\$	14,400	\$	14,400	\$	13,614	\$	786
Report Preparation - NPDES	\$	15,000	\$	3,750	\$	420	\$	3,330
Office Lease/Storage	\$	3,000	\$	750	\$	648	\$	102
Printing \& Binding	\$	500	\$	125	\$	24	\$	101
Postage	\$	600	\$	150	\$	173	\$	(23)
Legal Advertising	\$	2,500	\$	625	\$	-	\$	625
Bank Fees	\$	600	\$	150	\$	116	\$	34
Other Current Charges	\$	400	\$	100	\$	-	\$	100
Office Supplies	\$	350	\$	88	\$	18	\$	70
Election Fees	\$	4,250	\$	-	\$	-	\$	-
Meeting Rental Fee	\$	500	\$	125	\$	50	\$	75
Property Appraiser Fee	\$	5,417	\$	-	\$	-	\$	-
Dues, Licenses \& Subscriptions	\$	1,675	\$	419	\$	175	\$	244
Total Administrative:	\$	167,372	\$	52,676	\$	42,655	\$	10,021

Operations \& Maintenance

Contracts:								
Aquatic Weed Control	\$	40,000	\$	10,000	\$	6,966	\$	3,034
Mowing	\$	98,289	\$	24,572	\$	20,483	\$	4,090
Water Quality Monitoring	\$	19,746	\$	4,937	\$	3,291	\$	1,646
Repairs \& Maintenance:								
Canal \& Retention Pond Maintenance	\$	40,000	\$	10,000	\$	1,000	\$	9,000
Security Gates \& Signs	\$	750	\$	188	\$	-	\$	188
NPDES Inspection \& Fees	\$	6,000	\$	1,500	\$	1,875	\$	(375)
Operating Supplies	\$	500	\$	125	\$	-	\$	125
Contingency	\$	2,500	\$	625	\$	-	\$	625
Total Operations \& Maintenance:	\$	207,785	\$	51,946	\$	33,615	\$	18,331

Valencia

Water Control District
General Fund
Statement of Revenues, Expenditures, and Changes in Fund Balance For The Period Ending December 31, 2023

	Adopted		Prorated Budget		Actual		Variance	
	Budget		Thru 12/31/23		Thru 12/31/23			
Capital Improvements								
Transfer Out-Capital Reserve	\$	245,392	\$	-	\$	-	\$	-
Total Reserves	\$	245,392	\$	-	\$	-	\$	-
Total Expenditures	\$	620,549	\$	104,623	\$	76,270	\$	28,353
Excess Revenues (Expenditures)	\$	$(66,370)$			\$	133,037		
Fund Balance-Beginning	\$	66,370			\$	160,900		
Fund Balance - Ending	\$	-			\$	293,937		

Valencia

Water Control District
Capital Reserve
Statement of Revenues, Expenditures, and Changes in Fund Balance
For The Period Ending December 31, 2023

	Adopted		Prorated Budget		Actual		Variance	
	Budget		Thru 12/31/23		Thru 12/31/23			
Revenues:								
Transfer In	\$	245,392	\$	-	\$	-	\$	-
Interest	\$	35,000	\$	8,750	\$	11,252	\$	2,502
Total Revenues	\$	280,392	\$	8,750	\$	11,252	\$	2,502

Expenditures:

Contingency	\$	600	\$	150	\$	114	\$	36
Capital Outlay	\$	119,181	\$	29,795	\$	42,918	\$	$(13,123)$
Total Expenditures	\$	119,781	\$	29,945	\$	43,032	\$	$(13,087)$
Excess Revenues (Expenditures)	\$	160,611	\$	$(21,195)$	\$	$(31,780)$		
Fund Balance-Beginning	\$	1,066,244			\$	1,067,757		
Fund Balance - Ending	\$	1,226,855			\$	1,035,977		

Valencia

Water Control District

Special Assessment Receipts

Fiscal Year 2024

Section V

SECTION A

Sea World of Florida, LLC
Attn: Carlos Varela, Director - Design \& Engineering
9205 South Park Center Loop, Suite 400
Orlando, FL 32819
Subject: Permit \#0530

Dear Mr. Varela:
Sea World of Florida, LLC is hereby granted a construction permit related to the Aquatica Parking Expansion project. Approval is granted in accordance with approved plans and hydraulic calculations and the following GENERAL AND SPECIFIC CONDITIONS:

GENERAL CONDITIONS:

1. That the District or their agents may at any time make such inspections as they may deem necessary to ensure that the construction or work is performed in accordance with the conditions of this permit.
2. That the permittee will maintain the work authorized herein during construction and thereafter in good condition in accordance with the approved plans.
3. That the permittee shall comply promptly with any lawful regulations, conditions, or instructions affecting the structure or work authorized herein if and when issued by the U.S. Environmental Protection Agency, the South Florida Water Management District and the Florida Department of Environmental Protection and/or any county or city environmental protection agency having jurisdiction to abate or prevent water pollution, including thermal or radiation pollution. Such regulations, conditions, or instructions in effect or hereafter prescribed by the federal, state, county and city agencies have hereby made a condition of this permit.
4. It is understood and agreed that the rights and privileges herein set out are granted only to the extent of the District's right, title and interest in the land to be entered upon and used by the permittee, and the permittee will at all times, assume all risk and indemnify, defend and save harmless Valencia Water Control District from and against any and all loss, damage, cost or expense arising in any manner on account of the exercise or attempted exercises by the permittee of the aforesaid rights and privileges.
5. The permittee and/or their agents will use every measure to prevent the run-off of turbid water into the District's facilities including, but not limited to, the use of temporary ponds, silt barriers, chemical additives and temporary grassing during construction.
6. If discharge of water by permittee should at any time raise the level of pollutants in the District's water management facility to the point where the District is in violation of a statute or regulation, permittee will either: (a) immediately cease such discharge, (b) remove pollutants from the water before discharging into District facilities, and pay all costs which the District must incur in order to reduce pollution in the District's facilities to acceptable levels.
7. That all the provisions of this permit shall be binding on any assignee or successor in interest of the permittee.
8. That any modification, suspension or revocation of this permit shall not be the basis for a claim for damages against Valencia Water Control District.
9. The Valencia Water Control District agrees that the issuance of this permit allows the passage of water through their canals but in so doing does not assume any responsibility for damage to any persons or property.
10. That the engineer of record certify that the facilities as constructed comply with the submitted hydraulic calculations and approved drawings.
11. That the permittee agrees not to modify or alter the constructed facilities at any future time without the express consent of the District.
12. This permit is valid for 3 years from date of approval or runs concurrently with the SFWMD permit, if required, whichever expires first.
13. That this permit must be executed within 30 days of Board approval or must be brought back to the Board for reconsideration.

END OF GENERAL CONDITIONS

SPECIFIC CONDITIONS

1. That the Construction Plans, sheets C02.000; C02.010; C02.020; C02.101; C02.201; C02.251; C02.261; C02.271; C02.281; C02.301; C02.500; C02.501; C02.502; C02.503; L01.100; L02.100; L02.101; L02.300; L02.301; L02.302; L02.591; L02.700; L02.701; L02.702; L02.791 titled Aquatica Orlando 2024 Parking Expansion as recommended for approval by the District Engineer on December 20, 2023, become part of this permit.

Attest:

Signature:
Sea World of Florida, LLC
Title: \qquad

Granted by:

Valencia Water Control District

By:
Roy Miller, President
On this \qquad day of \qquad , 2024

117 East Robinson St
Orlando, FL 32801
Phone: 407.425.0452
Fax: 407.648.1036

December 21, 2023

Board of Directors

Valencia Water Control District
219 E. Livingston Street
Orlando, Florida 32801
RE: SWO AQO 2024 - Aquatica Parking Lot VWCD Permit No. 530
CPH Project No. 6816.07
Dear Honorable Board Members:
We have completed our review of the above referenced project submitted by Land Design on December 15, 2023. Based on our review, we have no objection to the Board approving this permit.

Sincerely,

CPH, LLC

David E. Mahler, P.E.
District Engineer

Cc: Jason Rostek, P.E., Land Design file

Permit No. \qquad
(Assigned by V.W.C.D.)
PERIMIT APPLICATION
Valencia Water Control District
c/o CPH, Inc.
1117 E. Robinson Street
Orlando, FL 32801
VWCD Office: (407) 841-5524 X 101 CPH, Inc. (407) 425-0452
(1) PROPOSED USE: Aquatica Parking Expansion 2024
(2) LOCATION OF WORK: Block:
or Section: $\underset{7}{ } \quad$ Township:___ ${ }_{24}^{\text {Lot: }} \quad \begin{aligned} & \text { Range: } \\ & \underbrace{\text { Subdivision: }}_{29}\end{aligned}$
\qquad Township: \qquad Range: \qquad
\qquad
(3) DISTRICT WORKS INVOLVED: Canal C-5 (Receiving Water Only)
(4) OWNER OF PROPOSED WORK OR STRUCTURE: Phone \#: (407) 363-2127

Address: 9205 South Park Center Loop, Suite 400	Orando	FL	32819.1
(Street)	(City)	(State)	(Zip)

(5) APPLICATION OTHER THAN OWNER: (if any) Phone \#: (4077) 402-2913

Name: Jason Rostek / LandDesign

	Address:100 S. Orange Ave., Suite 200	Orlando	FL	32801
(Street)	(City)		(State)	(Zip)

(6) AREA PROPOSED TO BE SERVED: Give legal description and size in acres. Attach legal description if necessary. If land is platted, indicate Block, Lot and Subdivision. The proposed project area is 5.89 acres. Tax Parcel ID Numbers $07-24-29-7959-00-010$ \& $07-24-29-7559-00-011$
(7) CONSTRUCTION SCHEDULE: The proposed work, if permitted, will begin within 60 Calendar days of permit approval and be completed within \qquad calendar days thereafter.
(8) This application, including sketches, drawings or plans and specifications attached contains a full and complete description of work proposed or use desired of the above described facilities of the District and for which permit is herewith applied. It shall be a part of any permit that may be issued. It is agreed that all work or the use of the District's facilities will be in accordance with the permit to be granted.
Submitted this $15^{\text {tht }}$ day of DECEMBER . 2023 .

Signature of Property Owner (Officer of Corporation):

Print Name of Property Owner (Officer): Carlos Varela, R.A. - Director, Design \& Engineering

AQUATICA ORLANDO 2024 PARKING EXPANSION INFRASTRUCTURE IMPROVEMENTS - CONSTRUCTION PLAN

ORANGE COUNTY, FL
DATE: 12/19/2023

SHEET LIST TABLE	
SHEET NUMBER	SHEET TITLE
C02.000	COVER SHEET AND INDEX OF DRAWING
C02.010	GENERAL NOTES AND ABBREVIATIONS
C02.020	DRAWING KEY MAP
C02.101	DEMOLITION AND EROSION CONTROL PLAN
C02.201	SITE PLAN
C02.251	SIGNAGE AND STRIPING PLAN
C02.261	EmERGENCY ACCESS PLAN
C02.271	EMERGENCY ACCESS PLAN
C02.281	EMERGENCY ACCESS PLAN
C02.301	GRADING AND DRAINAGE PLAN
C02.500	EROSION CONTROL AND DRAINAGE DETALLS
C02.501	EROSION CONTROL \& DRAINAGE DETAILS
C02.502	SITE DETALLS
C02.503	PRE-CAST WALL AND UTILITY DETALLS
L01.100	GENERAL NOTES / ABBREVIATIONS / SYMBOLS
L02.100	OVERALL SITE PLAN
L02.101	OVERALL KEY PLAN
L02.102	TREE REMOVAL AND PRESERVATION PLAN
L02.300	HARDSCAPE SCHEDULE \& NOTES
L02.301	HARDSCAPE PLAN
L02.302	HARDSCAPE PLAN
L02.591	HARDSCAPE DETAlLS
L02.700	LANDSCAPE SCHEDULE \& NOTES
L02.701	LANDSCAPE PLAN
L02.702	LANDSCAPE PLAN
L02.791	LANDSCAPE DETAlLS

PROJECT TEAM

 OWNER/DEVELOPER

LANDSCAPE ARCHITECT
LANDDESIGN
100 SOUTH ORANGE AVE SUITE 200
100 LOUTH ORANG
ORLANO,
LLL 2380
407.277.7880
COTTACT NAME: ANDREW GARRELS, PLA

CIVIL ENGINEER
LOODOUTH ORANGE AVE., sUITE 200

OOD SOUTH HRANGE
OLANDO. FL 32801

407.27. 78000 O
COTTACT NAME: JASON ROSTEK, P.E

ARCHITECT

ARCHV ESTINATIINS
SOA NOTHRROADW

CONTACT NAME: ANDREW GARRELS, PLA
general notes:

 Rerion instal

mitafoonsmucta

 AL florid departuen of reansoortation

EROSION CONTROL NOTES:

 REEOVE AND LEGALLI OISPOSE OFSAD MEASURES.

 CONTROL AT ALL TMES

Rosion And Dust control SHAll

VGNERR, AND REGULATORY AGENCIES.

REPRESENTATIV ACCEPTANCE.

durne co

 NY DISCREPANCIES ARE FOUMA

dRAINAGE:

1. ALL STorm diana

 5. ALL STORM DRAMAGE MAMHOLE COVERS ARETO BE THE STANDRD ORANGE COUNT . Soo or resood areas ilt

ROADWAY:
 2. Horrzontal leometre refers to roadmar edog of pavement

7. acens Is regured for nstallation of underground ututiles
8. Contractor stall use foot certific fill personnel for mantenance of

2. Contractor to relocate exsting sinvage where nicated onthe drawnos.

4. Pavemer maring A All Exst

STORMWATER MANAGEMENT AND DRAINAGE SYSTEM

PGGAV

PGAV

 general notes

(1)STAKED TURBIDITY BARRIER DETAIL

(2) SILT FENCE DETAIL \square

(3) INLET SEDIMENT FILTER DETAIL

PGAV

5 TEMPORARY CONSTRUCTION ACCESS DETAIL

PGAV

plan View

SECTION B-B
$\bigoplus_{\text {NIS }}$ DRY POND BROAD CRESTED WEIR CONTROL STRUCTURE DETAIL

(2) DRY SWALE SECTION

$\Theta_{\text {Nis }}$ DRY SWALE SECTION

PGAV

Notes

 Mand -. FIGURE A101
 $\underset{\substack{\text { FIGURE A101 } \\ \text { inorovan }}}{ }$

(2) BEDDING AND TRENCHING DETALLS
$\frac{\mathrm{PLANVIEW}}{1 / 4=1=-0^{-}}$

3

\square
$\frac{\text { Elevation }}{1 / 44^{4}=1 \cdot 0^{\prime \prime}}$

 (1) PRECAST CONCRETE WALL DESIGN INTENT

Section B

Project Starboard
 Canal C-5 Reconfiguration Study SeaWorld Parks \& Entertainment

13 December 2023

Notice

This document and its contents have been prepared and are intended solely as information for SeaWorld Parks \& Entertainment and use in relation to Agency Permitting.

WS Atkins, Inc. assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.
This document has 56 pages including the cover.

Document history

Document title: Canal C-5 Reconfiguration Study
Document reference: DC-WP-SWMR

Revision	Purpose description	Originated	Checked	Reviewed	Authorized	Date
1.0	Valencia WCD	RAR				$12 / 13 / 23$

Client signoff

Client	SeaWorld Parks \& Entertainment
Project	Project Starboard
Job number	100085256
Client signature/date	

Contents

Chapter Page
Executive Summary 4

1. Design Requirements 6
2. Stormwater Analysis 6
3. Existing Conditions 6
3.1. Existing Conditions Model Results 8
4. Canal C-5 Reconfiguration Options 8
4.1. Option \#1: Place portion of Canal C-5 in rectangular section 8
4.2. Option \#2: Place portion of Canal C-5 in twin culverts 8
4.3. Option \#3: Relocate portion of Canal C-5 to the east and place in rectangular section. 9
5. Summary 10
6. Conclusion 10
Appendices 12
Appendix A. Exhibits 13
A.1. Location Map 13
A.2. Aerial Map 13
A.3. Valencia Water Control District Water Control Plan 13
A.4. Amil Gate S-501 Detail 13
A.5. Option \#1 Exhibit 13
A.6. Option \#2 Exhibit 13
A.7. Option \#3 Exhibit 13
Appendix B. HEC-RAS Models 14
B.1. Existing HEC-RAS Model 14
B.2. Option \#1 HEC-RAS Model 14
B.3. Option \#2 HEC-RAS Model 14
B.4. Option \#3 HEC-RAS Model 14
Appendix C. Historic Data 15
C.1. Application 960806-5: VWCD Canal C-5 Relocation @ SeaWorld 15
Appendix D. Additional Data 16
D.1. HEC-RAS Hydraulic Reference Manual Table 3-1: Manning's n Values 16

Executive Summary

SeaWorld Parks \& Entertainment (Owner) would like to change the current use of parcels 12-24-28-7874-00-020 and 12-24-28-7874-00-021 (Parcels \#3 and \#4, respectively. See Figure 1: Parcels of Interest) and develop a hotel/resort with approximately 504 keys. To maximize land use, the Owner is proposing the following options for reconfiguration of the portion of existing Canal C-5 that runs adjacent to the west side of Parcel \#3:

- Option \#1: This option would capture Canal C-5 near the beginning of the turn to the west along the north side of Parcel \#3. Canal C-5 would enter a 42 ft . wide x 15 ft . high rectangular channel section. The proposed storm system consisting of twin culverts at the road crossings and the rectangular channel would convey flows along the existing Canal C-5 path on the west side of Parcel \#3 and direct the flows toward the existing twin 10 ft . x 5 ft . culverts that cross under Central Florida Parkway (CFP).
- Option \#2: This option would capture Canal C-5 near the end of the turn to the west along the north side of Parcel \#3. Canal C-5 would enter twin $12 \mathrm{ft} . \times 10 \mathrm{ft}$. box culverts. The proposed twin culvert system would convey flows along the existing Canal C-5 path on the west side of Parcel \#3 and direct them toward the proposed twin 11 ft . x 6 ft . culverts that cross under the western entrance to Parcel \#3 and continue toward the existing twin 10 ft . x 5 ft . culverts that cross under CFP.
- Option \#3: This option would relocate the portion of Canal C-5 running along the west side of Parcel \#3 to the east of said Parcel. This portion of Canal C-5 would enter twin 10 ft . $\times 6 \mathrm{ft}$. culverts that convey flow under the proposed entrance and connect to a 42 ft . wide $\times 15 \mathrm{ft}$. high rectangular channel section that continues to the south along International Drive (I-Drive) and turns west at the intersection of International Drive (I-Drive) and CFP. From here it would continue west along CFP and connect to the existing twin 10 ft . x 5 ft . box culverts that cross under CFP.

This study analyzes each option and compares it to the current configuration for Canal C-5. The goal is to achieve a near zero rise in water surface elevation while using the minimum rectangular canal cross section to reduce the drainage easement, without impacting the upstream systems discharging into Canal C-5. The following pages will describe the available data, the proposed options models, provide a comparison to the existing conditions model, and provide a conclusion.

Figure 1: Parcels of Interest

Source: Orange County Florida Property Appraiser web site.

ID	Parcel Number	Owner Name	Physical Address
3	$12-24-28-7874-00-$ 020	SeaWorld of Florida, Inc.	10700 International Dr., Orlando, FL 32821
4	$12-24-28-7874-00-$ 021	SeaWorld of Florida, Inc.	10890 International Dr., Orlando, FL 32821

1. Design Requirements

The Design Requirement of the following study is to achieve a near zero rise in the water surface elevations of Canal C-5 with the three (3) Options presented in the Executive Summary.

2. Stormwater Analysis

The stormwater modeling computer program Hydrologic Engineering Center River Analysis System (HECRAS) version 6.4.1 was used for analyzing the existing conditions and the different proposed options. The models use one-dimensional steady flow data extracted from the Water Control Plan (WCP) provided by the Valencia Water Control District (VWCD) and prepared by CPH Engineering on May 29, 1998 (Updated July 15, 2003). The VWCD also provided information on the Amil Gate S-501 (See Appendix A for Detail Sheet by Gee \& Jenson Consulting Engineering, Inc. dated November 1972). This information was used to verify the Valencia Water Control Plan (Valencia WCP) and to establish the tailwater used. The VWCD also indicated that all elevations are in the National Geodetic Vertical Datum of 1929 (NGVD 29).

3. Existing Conditions

Canal C-5 currently runs south starting at an Elliptical Reinforced Concrete Pipe (ERCP) Culvert located at the intersection of Sea Harbor Drive and I-Drive. From this point, C-5 continues south along the western side of I-Drive until it reaches Parcel \#3 (See Figure 1). At this point, Canal C-5 turns to the west along the north side of Parcel \#3 and continues its flow toward the west side of said parcel. At the northwest corner of Parcel \#3, Canal C-5 turns south and runs along the west side of said parcel, crossing under a set of twin 10 ft . x 5 ft . box culverts located at the western entrance to Parcel \#3. Canal C-5 continues south until it reaches another set of twin 10 ft . x 5 ft . box culverts crossing under CFP. Canal C-5 continues south after CFP until it reaches Amil Gate S-501; this is where the water surface elevation and flows in Canal C-5 are controlled by the gate. After the S-501 gate, Canal C-5 continues south along the east side of the Discovery Cove property until it connects with Canal C-1.
For comparison purposes, this study is interested in the section of Canal C-5 that begins at a point approximately 200 feet north of the beginning of the bend to the west along the north side of Parcel \#3 and ends at or after the existing twin 10 ft . x 5 ft . box culverts crossing under CFP. The tailwater assumed for the existing and all three (3) options is the elevation at the Amil Gate S-501 during a 25 -year / 72-hour storm and indicated on the WCP to be 85.17 ft . NGVD 29. The WCP indicates that a Total Flow of 459 cfs is conveyed by the twin 10 ft . x 5 ft . box culverts crossing under CFP during a 25 -year / 72-hour storm event. It is assumed that the studied section of Canal C-5 should convey the same flow. This information was used in creating the one-dimensional steady flow analysis for the existing conditions and the three (3) options. See Figure 2: Water Control Plan for more details.
The existing Canal C-5 alignment and profile information was gathered from available Survey Civil 3D data and a typical cross-section extracted from detail sheet C2.11 of Construction Plans for the SWF Pond '6' Relocation as-builts dated 10/26/1996 (Application \# 960806-5). See Appendix C for additional information.
The existing Canal C-5 is being considered as an excavated channel with "Dense weeds". The Manning's n Roughness Coefficient used in the existing channel model is $\mathbf{0 . 0 3 5}$. See Appendix D for additional information.

Figure 2: Water Control Plan

Source: The Valencia Water Control Plan by CPH. Dated 05/29/1998.

3.1. Existing Conditions Model Results

All data previously described in the above section was used to create a HEC-RAS one-dimensional steady flow model. The following table shows the elevations at different points of interest along Canal C-5. See Appendix B for full table results, profile, and model layout.

Location	25-Year / 72-Hour Water Surface Elevation (ft.)
Comparison Point \#1 (CP \#1)	86.46
Comparison Point \#2 (CP \#2)	85.81

4. Canal C-5 Reconfiguration Options

4.1. Option \#1: Place portion of Canal C-5 in rectangular section

As previously described, beginning at the northeast corner of Parcel \#3, before the existing Canal C-5 turns to the west, the existing Canal C-5 will enter a 42 ft . wide $\times 15 \mathrm{ft}$. high rectangular channel section which will continue to convey the flow westward along the northern side of Parcel \#3. The rectangular section of Canal C-5 through Parcel \#3 will consist of a concrete bottom and vertical sheet piles on the sides. The sides are planned to be themed to enhance the look of Canal C-5 along the northern and western sides of Parcel \#3. The rectangular channel will continue to the west until a proposed entrance to Parcel \#3 which will be in the northwest corner of said parcel. At this point, twin 12 ft . x 10 ft . box culverts will convey the flow under the proposed entrance road. The Canal C-5 rectangular section will continue south along the western side of Parcel \#3 until it reaches the existing twin 10 ft . x 5 ft . box culverts under the Western Entrance to the parcel. After this point, Canal C-5 will continue its existing path and configuration toward the existing twin 10 ft . x 5 ft . box culverts under CFP.
A HEC-RAS model was created using the same beginning and ending points indicated in the existing conditions (See Section 3). The same tailwater of 85.17 ft ., assumed for the existing condition, was used for this option. The same Total Flow of 459 cfs was also used to create the one-dimensional steady flow analysis used in HEC-RAS. The proposed rectangular section is considered as a "Concrete Bottom float finished with sides of Dry Rubble on Riprap" for possible theming sides. The Manning's n Roughness Coefficient used in this Option model is $\mathbf{0 . 0 3 5}$. See Appendix D for additional information.

4.1.1. Option \#1 Model Results

All data previously described in the above section was used to create a HEC-RAS one-dimensional steady flow model. The following table shows the elevations at the beginning and end of the relocated portion of Canal C-5. See Appendix B for full table results, profile, and model layout.

Location	25-Year / 72-Hour Water Surface Elevation (ft.)
Comparison Point \#1 (CP \#1)	86.46
Comparison Point \#2 (CP \#2)	85.81

4.2. Option \#2: Place portion of Canal C-5 in twin culverts

As previously described, beginning near the end of Canal C-5's turn to the west along the north side of Parcel \#3, a twin set of 12 ft . x 10 ft . box culverts will capture the flow and convey it along the existing Canal C-5 path on the west side of Parcel \#3. The proposed storm system will connect to a point in the existing Canal C-5 located approximately 250 ft . north of the Box Culverts under the Western Entrance to Parcel
\#3. It is recommended that the existing culverts be upsized to twin 12 ft . x 6 ft . box culverts. At this point, the flows will continue the same existing path toward the existing twin 10 ft . $\times 5 \mathrm{ft}$. box culverts located under CFP.

A HEC-RAS model was created using the same beginning and ending points indicated in the existing conditions (See Section 3). The same tailwater of 85.17 ft ., assumed for the existing condition, was used for this option. The same Total Flow of 459 cfs was also used to create the one-dimensional steady flow analysis used in HEC-RAS. The existing portions of Canal C-5 are being considered as excavated channel with "Dense weeds". The Manning's n Roughness Coefficient used in the existing portions of the channel model is $\mathbf{0 . 0 3 5}$. See Appendix D for additional information.

4.2.1. Option \#2 Model Results

All data previously described in the above section was used to create a HEC-RAS one-dimensional steady flow model. The following table shows the elevations at the beginning and end of the relocated portion of Canal C-5. See Appendix B for full table results, profile, and model layout.

Location	25-Year / 72-Hour Water Surface Elevation (ft.)
Comparison Point \#1 (CP \#1)	86.51
Comparison Point \#2 (CP \#2)	85.81

4.3. Option \#3: Relocate portion of Canal C-5 to the east and place in rectangular section.

As previously described, beginning at the northeast corner of Parcel \#3, before the existing Canal C-5 turns to the west, the existing Canal C-5 will enter twin 10 ft . x 6 ft . culverts that convey the flow under the proposed northeast entrance to Parcel \#3 and convey flow toward the south where a 42 ft . wide $\times 15 \mathrm{ft}$. high rectangular channel section will continue to convey the flow southward along I-Drive. The rectangular section of Canal C-5 through Parcels \#3 and \#4 will consist of a concrete bottom and vertical sheet piles on the sides. The sides are planned to be themed to enhance the look of Canal C-5 along I-Drive. The rectangular section will continue until the southeast corner of Parcel \#3. At this point, the rectangular section of Canal C-5 will begin to gradually turn toward the west (300 ft . radius) and continue along CFP until it reaches the existing twin $10 \mathrm{ft} . \times 5 \mathrm{ft}$. box culverts that cross under CFP.

A HEC-RAS model was created using the same beginning and ending points indicated in the existing conditions (See Section 3). The same tailwater of 85.17 ft ., assumed for the existing condition, was used for this option. The same Total Flow of 459 cfs was used to create the one-dimensional steady flow analysis used in HEC-RAS. The proposed rectangular section is considered as a "Concrete Bottom float finished with sides of Dry Rubble on Riprap" for possible theming sides. The Manning's n Roughness Coefficient used in this Option model is $\mathbf{0 . 0 3 5}$. See Appendix D for additional information.

4.3.1. Option \#3 Model Results

All data previously described in the above section was used to create a HEC-RAS one-dimensional steady flow model. The following table shows the elevations at the beginning and end of the relocated portion of Canal C-5. See Appendix B for full table results, profile, and model layout.

Location	25-Year / 72-Hour Water Surface Elevation (ft.)
Comparison Point \#1 (CP \#1)	86.38
Comparison Point \#2 (CP \#2 adjusted*)	85.82

* The location for CP \#2 was adjusted to the headwall for the existing twin box culverts under CFP because Option \#3 eliminates the need for box culverts under the existing Western Entrance to Parcel \#3.

5. Summary

Below is a table summarizing the results of each of the models and comparing them to the existing conditions for the 25 -year / 72 -hour storm event.

Location	Water Surface Elevation (ft.) Existing	Water Surface Elevation (ft.) Option \#1	Water Surface Elevation (ft.) Option \#2	Water Surface Elevation (ft.) Option \#3	Notes
Comparison	86.46	86.46	86.51	86.38	Option \#2 yielded an elevation slightly higher, but it is near negligible.
Point \#1 (CP \#1)					85.82
The location for this point on Comparison Point \#2 (CP \#2)	85.81	85.81	85.81		Option \#3 was adjusted to the headwall for the existing twin box culverts under CFP because Option \#3 eliminates the need for box culverts under the existing Western Entrance to Parcel \#3

6. Conclusion

As indicated in the Summary, all Options yield water surface elevations very close to the elevations resulting from the existing conditions. Below are some key points taken into consideration when analyzing each option:

- Option \#1: This option would capture Canal C-5 near the beginning of the turn to the west along the north side of Parcel \#3. Canal C-5 would enter a 42 ft . wide $\times 15 \mathrm{ft}$. high rectangular channel section. This is a preferred option. This option provides additional area that the owner can use, while at the same time, maintaining a similar alignment for Canal C-5. This option also provides easy access for maintenance and inspection from the existing maintenance road on the west side of Canal C-5.
- Option \#2: This option would capture Canal C-5 near the end of the turn to the west along the north side of Parcel \#3 with twin 12 ft . 10 ft . box culverts. This is not a preferred option due to placing Canal C-5 inside box culverts will make it difficult to inspect and provide regular maintenance.
- Option \#3: This option would relocate the portion of Canal C-5 running along the west side of Parcel \#3 to the east of said Parcel. This portion of Canal C-5 would enter twin 10 ft . x 6 ft . culverts that convey flow under the proposed entrance and connect to a 42 ft . wide $\times 15 \mathrm{ft}$. high rectangular channel section. This is not a preferred option. A large portion of Canal C-5 is being placed inside box culverts that will make it difficult to inspect and maintain. Also, while the rectangular section will make it easier to inspect, its proximity to I-Drive on the east side and future development on the west side, could pose maintenance accessibility problems.

Appendices

Appendix A. Exhibits

A.1. Location Map
A.2. Aerial Map
A.3. Valencia Water Control District Water Control Plan
A.4. Amil Gate S-501 Detail
A.5. Option \#1 Exhibit
A.6. Option \#2 Exhibit
A.7. Option \#3 Exhibit

SOURCE: BING MAPS, 12/4/2023

AtkinsRéalis	EXHIBIT A. 2.	Scale 1 " $=500$	${ }^{\text {Date }} 12 / 11 / 2023$	
	AERIAL MAP	\| Pg Size ${ }^{\text {ANS }}$ A (LETTER)	${ }^{\text {Dr }}$ RAR	${ }^{\text {ck }} \mathrm{CMP}$

AtkinsRéalis mexisicicio and FAX. 407.806 .4500
wwwakikisseais.com

Appendix B. HEC-RAS Models

B.1. Existing HEC-RAS Model
B.2. Option \#1 HEC-RAS Model
B.3. Option \#2 HEC-RAS Model
B.4. Option \#3 HEC-RAS Model

Existing HEC-RAS Model

HEC-RAS Plan: Total at Gate River: C5-Existing Reach: HEC-RAS Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
HEC-RAS	3013.110	PF 1	459.00	75.43	86.55		86.58	0.000125	1.38	333.28	62.93	0.11
HEC-RAS	2883.260	PF 1	459.00	75.38	86.53		86.56	0.000123	1.37	335.59	63.23	0.10
HEC-RAS	2753.410	PF 1	459.00	75.32	86.52		86.54	0.000121	1.36	338.27	63.57	0.10
HEC-RAS	2733.520	PF 1	459.00	75.31	86.51		86.54	0.000120	1.35	338.90	63.65	0.10
HEC-RAS	2713.630	PF 1	459.00	75.30	86.51		86.54	0.000120	1.35	339.36	63.72	0.10
HEC-RAS	2693.740	PF 1	459.00	75.30	86.51		86.54	0.000120	1.35	339.55	63.76	0.10
HEC-RAS	2673.840	PF 1	459.00	75.29	86.51		86.53	0.000119	1.35	339.93	63.79	0.10
HEC-RAS	2610.880	PF 1	459.00	75.26	86.50		86.53	0.000118	1.35	341.06	63.91	0.10
HEC-RAS	2547.910	PF 1	459.00	75.23	86.49		86.52	0.000117	1.34	342.44	64.08	0.10
HEC-RAS	2484.950	PF 1	459.00	75.21	86.48		86.51	0.000116	1.34	343.47	64.23	0.10
HEC-RAS	2421.980	PF 1	459.00	75.18	86.48		86.50	0.000115	1.33	345.29	64.47	0.10
HEC-RAS	2315.590	PF 1	459.00	75.14	86.46		86.49	0.000113	1.32	346.71	64.62	0.10
HEC-RAS	2231.920	PF 1	459.00	75.10	86.46		86.48	0.000112	1.32	348.57	64.85	0.10
HEC-RAS	2209.230	PF 1	459.00	75.07	86.45		86.48	0.000110	1.31	351.21	65.21	0.10
HEC-RAS	2187.330	PF 1	459.00	75.05	86.45		86.48	0.000109	1.30	352.70	65.45	0.10
HEC-RAS	2165.440	PF 1	459.00	75.02	86.45		86.47	0.000108	1.30	354.29	65.59	0.10
HEC-RAS	2143.560	PF 1	459.00	75.00	86.45		86.47	0.000107	1.29	355.68	65.80	0.10
HEC-RAS	2121.680	PF 1	459.00	74.97	86.44		86.47	0.000105	1.28	357.36	65.99	0.10
HEC-RAS	2099.800	PF 1	459.00	74.95	86.44		86.47	0.000104	1.28	358.69	66.14	0.10
HEC-RAS	2077.920	PF 1	459.00	74.92	86.44		86.47	0.000103	1.27	360.39	66.37	0.10
HEC-RAS	2056.030	PF 1	459.00	74.90	86.44		86.46	0.000102	1.27	361.81	66.55	0.10
HEC-RAS	2034.150	PF 1	459.00	74.87	86.44		86.46	0.000101	1.26	363.51	66.74	0.10
HEC-RAS	2012.270	PF 1	459.00	74.84	86.43		86.46	0.000100	1.26	364.98	66.91	0.09
HEC-RAS	1990.390	PF 1	459.00	74.82	86.43		86.46	0.000099	1.25	366.56	67.11	0.09
HEC-RAS	1968.500	PF 1	459.00	74.79	86.43		86.45	0.000098	1.25	368.16	67.27	0.09
HEC-RAS	1946.620	PF 1	459.00	74.77	86.43		86.45	0.000097	1.24	369.66	67.48	0.09
HEC-RAS	1924.740	PF 1	459.00	74.74	86.43		86.45	0.000096	1.24	371.40	67.65	0.09
HEC-RAS	1902.860	PF 1	459.00	74.72	86.42		86.45	0.000095	1.23	372.82	67.85	0.09
HEC-RAS	1880.980	PF 1	459.00	74.69	86.42		86.45	0.000094	1.22	374.71	68.07	0.09
HEC-RAS	1859.090	PF 1	459.00	74.67	86.42		86.44	0.000093	1.22	375.13	68.07	0.09
HEC-RAS	1682.890	PF 1	459.00	74.46	86.41		86.43	0.000086	1.18	388.13	69.56	0.09
HEC-RAS	1506.700	PF 1	459.00	74.26	86.39		86.41	0.000079	1.14	401.65	71.12	0.08
HEC-RAS	1487.220	PF 1	459.00	74.24	86.39		86.41	0.000078	1.14	403.83	71.43	0.08
HEC-RAS	1467.750	PF 1	459.00	74.21	86.39		86.41	0.000077	1.13	405.54	71.59	0.08
HEC-RAS	1448.280	PF 1	459.00	74.19	86.39		86.41	0.000076	1.13	407.03	71.76	0.08
HEC-RAS	1428.810	PF 1	459.00	74.17	86.39		86.41	0.000075	1.12	408.42	71.92	0.08
HEC-RAS	1409.340	PF 1	459.00	74.14	86.39		86.40	0.000075	1.12	410.07	72.09	0.08
HEC-RAS	1389.870	PF 1	459.00	74.12	86.38		86.40	0.000074	1.12	411.64	72.26	0.08
HEC-RAS	1370.390	PF 1	459.00	74.10	86.38		86.40	0.000073	1.11	413.04	72.45	0.08
HEC-RAS	1350.920	PF 1	459.00	74.08	86.38		86.40	0.000073	1.11	414.61	72.61	0.08
HEC-RAS	1331.450	PF 1	459.00	74.05	86.38		86.40	0.000072	1.10	416.18	72.77	0.08
HEC-RAS	1311.980	PF 1	459.00	74.03	86.38		86.40	0.000071	1.10	417.77	72.94	0.08
HEC-RAS	1292.510	PF 1	459.00	74.01	86.38		86.40	0.000071	1.09	419.20	73.13	0.08
HEC-RAS	1273.040	PF 1	459.00	73.99	86.38		86.39	0.000070	1.09	420.77	73.29	0.08
HEC-RAS	1253.570	PF 1	459.00	73.96	86.37		86.39	0.000069	1.09	422.45	73.46	0.08
HEC-RAS	1234.090	PF 1	459.00	73.94	86.37		86.39	0.000069	1.08	424.10	73.65	0.08
HEC-RAS	1214.620	PF 1	459.00	73.92	86.37		86.39	0.000068	1.08	425.53	73.82	0.08
HEC-RAS	1195.150	PF 1	459.00	73.90	86.37		86.39	0.000068	1.08	426.22	73.83	0.08
HEC-RAS	1002.020	PF 1	459.00	73.67	86.36		86.38	0.000062	1.04	442.06	75.49	0.08
HEC-RAS	809.070	PF 1	459.00	73.45	86.35		86.36	0.000056	1.00	458.25	77.19	0.07
HEC-RAS	616.030	PF 1	459.00	73.22	86.34		86.35	0.000051	0.97	475.19	78.93	0.07
HEC-RAS	422.980	PF 1	459.00	73.00	86.34	74.96	86.35	0.000013	0.61	749.36	85.34	0.04
HEC-RAS	421.98		Culvert									
HEC-RAS	372.340	PF 1	459.00	73.00	85.82		85.83	0.000015	0.65	707.48	83.34	0.04
HEC-RAS	339.650	PF 1	459.00	73.00	85.81		85.83	0.000058	1.02	451.49	76.49	0.07
HEC-RAS	306.960	PF 1	459.00	73.00	85.82	74.95	85.82	0.000014	0.63	724.61	86.06	0.04
HEC-RAS	304.96		Culvert									
HEC-RAS	116.430	PF 1	459.00	73.00	85.20		85.21	0.000015	0.63	732.80	93.10	0.04
HEC-RAS	66.180	PF 1	459.00	73.42	85.18		85.21	0.000089	1.20	382.99	69.44	0.09
HEC-RAS	32.590	PF 1	459.00	73.71	85.18		85.20	0.000106	1.29	355.67	65.71	0.10
HEC-RAS	0.000	PF 1	459.00	73.99	85.17	77.79	85.20	0.000121	1.36	337.28	63.43	0.10

Existing HEC-RAS Model

Option \#1 HEC-RAS Model

	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	HEC-RAS	3031.920	PF 1	459.00	75.57	86.55		86.58	0.000134	1.41	324.53	61.81	0.11
	HEC-RAS	2902.070	PF 1	459.00	75.49	86.53		86.56	0.000130	1.40	328.45	62.32	0.11
	HEC-RAS	2772.220	PF 1	459.00	75.41	86.51		86.54	0.000126	1.38	332.46	62.82	0.11
	HEC-RAS	2752.330	PF 1	459.00	75.40	86.51		86.54	0.000125	1.38	333.12	62.92	0.11
	HEC-RAS	2732.440	PF 1	459.00	75.39	86.51		86.54	0.000125	1.38	333.57	62.98	0.11
	HEC-RAS	2712.550	PF 1	459.00	75.38	86.51		86.54	0.000124	1.37	334.10	63.05	0.11
	HEC-RAS	2692.660	PF 1	459.00	75.37	86.50		86.53	0.000124	1.37	334.62	63.12	0.11
	HEC-RAS	2629.690	PF 1	459.00	75.33	86.50		86.53	0.000122	1.36	336.53	63.34	0.10
	HEC-RAS	2566.730	PF 1	459.00	75.29	86.49		86.52	0.000120	1.36	338.56	63.61	0.10
	HEC-RAS	2503.760	PF 1	459.00	75.25	86.48		86.51	0.000119	1.35	340.51	63.83	0.10
	HEC-RAS	2456.130	PF 1	459.00	75.22	86.48		86.50	0.000117	1.34	342.93	64.18	0.10
CP \#1	HEC-RAS	2334.350	PF 1	459.00	75.15	86.46		86.49	0.000114	1.33	345.79	64.51	0.10
	HEC-RAS	2250.670	PF 1	459.00	75.10	86.45		86.48	0.000112	1.32	348.11	64.72	0.10
	HEC-RAS	2226.300	PF 1	459.00	75.07	86.46		86.48	0.000035	0.96	479.54	42.20	0.05
	HEC-RAS	2221.360	PF 1	459.00	75.06	86.46		86.47	0.000035	0.95	482.23	42.42	0.05
	HEC-RAS	2183.780	PF 1	459.00	75.02	86.46		86.47	0.000034	0.94	488.27	42.81	0.05
	HEC-RAS	2146.190	PF 1	459.00	74.98	86.46		86.47	0.000033	0.94	490.70	42.89	0.05
	HEC-RAS	2108.610	PF 1	459.00	74.93	86.46		86.47	0.000033	0.93	491.82	42.81	0.05
	HEC-RAS	2071.030	PF 1	459.00	74.89	86.46		86.47	0.000033	0.93	494.36	42.90	0.05
	HEC-RAS	2033.450	PF 1	459.00	74.85	86.46		86.47	0.000032	0.93	495.46	42.81	0.05
	HEC-RAS	1995.870	PF 1	459.00	74.80	86.45		86.47	0.000032	0.92	497.90	42.89	0.05
	HEC-RAS	1958.290	PF 1	459.00	74.76	86.45		86.47	0.000032	0.92	499.11	42.81	0.05
	HEC-RAS	1920.710	PF 1	459.00	74.72	86.45		86.46	0.000032	0.93	495.43	42.33	0.05
	HEC-RAS	1732.880	PF 1	459.00	74.51	86.45		86.46	0.000031	0.91	502.57	42.21	0.05
	HEC-RAS	1545.060	PF 1	459.00	74.29	86.44		86.45	0.000029	0.90	512.45	42.28	0.05
	HEC-RAS	1509.470	PF 1	459.00	74.24	86.44		86.45	0.000028	0.89	517.38	42.56	0.04
	HEC-RAS	1473.880	PF 1	459.00	74.21	86.44		86.45	0.000028	0.89	518.21	42.49	0.04
	HEC-RAS	1438.290	PF 1	459.00	74.16	86.44		86.45	0.000028	0.88	520.82	42.57	0.04
	HEC-RAS	1402.690	PF 1	459.00	74.13	86.44	75.67	86.45	0.000028	0.89	518.19	42.21	0.04
	HEC-RAS	1401.69		Culvert									
	HEC-RAS	1305.570	PF 1	459.00	74.01	86.36		86.37	0.000028	0.88	519.92	42.21	0.04
	HEC-RAS	1278.520	PF 1	459.00	73.98	86.36		86.37	0.000028	0.88	523.16	42.37	0.04
	HEC-RAS	1251.460	PF 1	459.00	73.95	86.36		86.37	0.000027	0.88	524.34	42.37	0.04
	HEC-RAS	1224.410	PF 1	459.00	73.92	86.36		86.37	0.000027	0.87	525.63	42.38	0.04
	HEC-RAS	1197.350	PF 1	459.00	73.89	86.35		86.37	0.000027	0.87	525.36	42.25	0.04
	HEC-RAS	1031.590	PF 1	459.00	73.70	86.35		86.36	0.000026	0.86	532.71	42.22	0.04
	HEC-RAS	865.830	PF 1	459.00	73.51	86.35		86.36	0.000025	0.85	544.71	50.54	0.04
	HEC-RAS	700.070	PF 1	459.00	73.32	86.34		86.35	0.000024	0.84	554.39	52.14	0.04
	HEC-RAS	534.310	PF 1	459.00	73.13	86.34		86.35	0.000023	0.82	564.15	53.66	0.04
	HEC-RAS	517.510	PF 1	459.00	73.11	86.34		86.35	0.000023	0.82	564.98	53.56	0.04
	HEC-RAS	500.710	PF 1	459.00	73.09	86.34		86.35	0.000023	0.82	564.63	52.78	0.04
	HEC-RAS	461.850	PF 1	459.00	73.04	86.34		86.35	0.000023	0.82	563.92	50.18	0.04
	HEC-RAS	422.980	PF 1	459.00	73.00	86.34	74.54	86.35	0.000022	0.82	563.78	48.53	0.04
	HEC-RAS	421.98		Culvert									
	HEC-RAS	372.340	PF 1	459.00	73.00	85.82		85.83	0.000015	0.65	707.49	83.34	0.04
CP \#2	HEC-RAS	339.650	PF 1	459.00	73.00	85.81		85.83	0.000058	1.02	451.50	76.49	0.07
	HEC-RAS	306.950	PF 1	459.00	73.00	85.82	74.95	85.82	0.000014	0.63	724.63	86.06	0.04
	HEC-RAS	304.95		Culvert									
	HEC-RAS	116.430	PF 1	459.00	73.00	85.20		85.21	0.000015	0.63	732.82	93.10	0.04
	HEC-RAS	66.170	PF 1	459.00	73.43	85.18		85.21	0.000089	1.20	382.52	69.26	0.09
	HEC-RAS	32.580	PF 1	459.00	73.72	85.18		85.20	0.000107	1.29	355.13	65.66	0.10
	HEC-RAS	0.000	PF 1	459.00	74.00	85.17	77.81	85.20	0.000122	1.36	336.68	63.38	0.10

Option \#1 HEC-RAS Model

Option \#2 HEC-RAS Model
HEC-RAS Plan: Culverts V2 River: C5-Same-Culverts Reach: HEC-RAS Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
HEC-RAS	3007.840	PF 1	459.00	75.43	86.59		86.62	0.000122	1.37	336.23	63.31	0.10
HEC-RAS	2877.990	PF 1	459.00	75.38	86.58		86.61	0.000120	1.36	338.57	63.61	0.10
HEC-RAS	2748.140	PF 1	459.00	75.32	86.56		86.59	0.000118	1.34	341.30	63.95	0.10
HEC-RAS	2728.250	PF 1	459.00	75.31	86.56		86.59	0.000117	1.34	341.96	64.03	0.10
HEC-RAS	2708.360	PF 1	459.00	75.30	86.56		86.59	0.000117	1.34	342.35	64.08	0.10
HEC-RAS	2688.470	PF 1	459.00	75.30	86.56		86.58	0.000117	1.34	342.55	64.13	0.10
HEC-RAS	2668.580	PF 1	459.00	75.29	86.55		86.58	0.000117	1.34	342.87	64.16	0.10
HEC-RAS	2605.610	PF 1	459.00	75.26	86.55		86.57	0.000116	1.33	344.08	64.29	0.10
HEC-RAS	2542.650	PF 1	459.00	75.23	86.54		86.57	0.000114	1.33	345.53	64.47	0.10
HEC-RAS	2479.680	PF 1	459.00	75.21	86.53		86.56	0.000114	1.32	346.44	64.60	0.10
HEC-RAS	2432.050	PF 1	459.00	75.19	86.53		86.55	0.000112	1.32	348.21	64.88	0.10
HEC-RAS	2310.270	PF 1	459.00	75.14	86.51		86.54	0.000111	1.31	349.81	64.99	0.10
HEC-RAS	2226.590	PF 1	459.00	75.10	86.50		86.53	0.000109	1.30	351.76	65.24	0.10
HEC-RAS	2203.910	PF 1	459.00	75.07	86.50		86.53	0.000108	1.30	354.31	65.59	0.10
HEC-RAS	2182.000	PF 1	459.00	75.05	86.50		86.53	0.000106	1.29	355.95	65.84	0.10
HEC-RAS	2160.120	PF 1	459.00	75.02	86.50		86.52	0.000105	1.28	357.44	65.98	0.10
HEC-RAS	2138.240	PF 1	459.00	75.00	86.50		86.52	0.000104	1.28	358.91	66.20	0.10
HEC-RAS	2116.360	PF 1	459.00	74.97	86.49		86.52	0.000103	1.27	360.60	66.37	0.10
HEC-RAS	2094.480	PF 1	459.00	74.95	86.49		86.52	0.000102	1.27	362.06	66.57	0.10
HEC-RAS	2072.590	PF 1	459.00	74.92	86.49		86.51	0.000101	1.26	363.57	66.75	0.10
HEC-RAS	2050.710	PF 1	459.00	74.90	86.49		86.51	0.000100	1.26	365.11	66.93	0.09
HEC-RAS	2028.830	PF 1	459.00	74.87	86.49		86.51	0.000099	1.25	366.84	67.14	0.09
HEC-RAS	2006.950	PF 1	459.00	74.84	86.48		86.51	0.000098	1.25	368.48	67.32	0.09
HEC-RAS	1985.060	PF 1	459.00	74.82	86.48		86.51	0.000097	1.24	369.93	67.52	0.09
HEC-RAS	1963.180	PF 1	459.00	74.79	86.48		86.50	0.000096	1.24	371.55	67.67	0.09
HEC-RAS	1941.300	PF 1	459.00	74.77	86.48		86.50	0.000095	1.23	373.13	67.89	0.09
HEC-RAS	1919.420	PF 1	459.00	74.74	86.48		86.50	0.000094	1.22	374.76	68.07	0.09
HEC-RAS	1897.540	PF 1	459.00	74.72	86.47		86.50	0.000093	1.22	376.26	68.25	0.09
HEC-RAS	1875.650	PF 1	459.00	74.69	86.47		86.49	0.000092	1.21	377.95	68.45	0.09
HEC-RAS	1853.770	PF 1	459.00	74.67	86.48	76.48	86.49	0.000018	0.70	658.73	80.54	0.04
HEC-RAS	1852.77		Culvert									
HEC-RAS	1353.710	PF 1	459.00	74.08	86.37	74.85	86.37	0.000002	0.35	1474.65	120.00	0.02
HEC-RAS	1353.61		Culvert									
HEC-RAS	1191.470	PF 1	459.00	73.90	86.28	74.66	86.28	0.000002	0.35	1486.06	120.00	0.02
HEC-RAS	1191.37		Culvert									
HEC-RAS	780.300	PF 1	459.00	73.42	86.17	74.18	86.17	0.000002	0.34	1530.40	120.00	0.02
HEC-RAS	780.2		Culvert									
HEC-RAS	609.480	PF 1	459.00	73.22	86.07		86.08	0.000013	0.62	745.87	85.02	0.04
HEC-RAS	516.230	PF 1	459.00	73.11	86.06		86.08	0.000055	0.99	462.30	77.64	0.07
HEC-RAS	422.980	PF 1	459.00	73.00	86.07	74.96	86.07	0.000014	0.63	726.09	84.14	0.04
HEC-RAS	421.98		Culvert									
HEC-RAS	372.340	PF 1	459.00	73.00	85.82		85.83	0.000015	0.65	707.49	83.34	0.04
HEC-RAS	339.650	PF 1	459.00	73.00	85.81		85.83	0.000058	1.02	451.47	76.51	0.07
HEC-RAS	306.960	PF 1	459.00	73.00	85.82	74.95	85.82	0.000014	0.63	724.63	86.06	0.04
HEC-RAS	304.96		Culvert									
HEC-RAS	116.430	PF 1	459.00	73.00	85.20		85.21	0.000015	0.63	732.82	93.10	0.04
HEC-RAS	66.170	PF 1	459.00	73.43	85.18		85.21	0.000089	1.20	382.49	69.27	0.09
HEC-RAS	32.580	PF 1	459.00	73.72	85.18		85.20	0.000107	1.29	355.18	65.66	0.10
HEC-RAS	0.000	PF 1	459.00	74.00	85.17	77.80	85.20	0.000122	1.36	336.63	63.35	0.10

Option \#2 HEC-RAS Model

	Reach	River Sta	Profile	Q Total	Min ChEl	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	HEC-RAS	3031.040	PF 1	459.00	75.43	86.46		86.49	0.000130	1.40	328.05	62.26	0.11
	HEC-RAS	2901.190	PF 1	459.00	75.38	86.45		86.48	0.000128	1.39	330.31	62.57	0.11
	HEC-RAS	2771.340	PF 1	459.00	75.32	86.43		86.46	0.000125	1.38	332.99	62.90	0.11
	HEC-RAS	2751.450	PF 1	459.00	75.31	86.43		86.46	0.000125	1.38	333.45	62.95	0.11
	HEC-RAS	2731.560	PF 1	459.00	75.30	86.43		86.45	0.000124	1.37	334.02	63.04	0.11
	HEC-RAS	2711.670	PF 1	459.00	75.30	86.42		86.45	0.000124	1.37	334.05	63.06	0.11
	HEC-RAS	2691.780	PF 1	459.00	75.29	86.42		86.45	0.000124	1.37	334.41	63.10	0.11
	HEC-RAS	2628.810	PF 1	459.00	75.26	86.41		86.44	0.000123	1.37	335.63	63.24	0.10
	HEC-RAS	2565.840	PF 1	459.00	75.23	86.41		86.43	0.000122	1.36	336.98	63.40	0.10
	HEC-RAS	2502.880	PF 1	459.00	75.21	86.40		86.43	0.000121	1.36	337.89	63.52	0.10
	HEC-RAS	2457.690	PF 1	459.00	75.19	86.39		86.42	0.000120	1.35	339.54	63.77	0.10
CP \#1	HEC-RAS	2333.490	PF 1	459.00	75.14	86.38		86.41	0.000118	1.35	341.12	63.93	0.10
	HEC-RAS	2276.890	PF 1	459.00	75.11	86.37		86.40	0.000117	1.34	342.50	64.09	0.10
	HEC-RAS	2249.800	PF 1	459.00	75.10	86.38	77.07	86.39	0.000020	0.70	657.70	90.57	0.05
	HEC-RAS	2245.8		Culvert									
	HEC-RAS	1766.480	PF 1	459.00	74.55	85.85		85.87	0.000035	0.96	479.42	42.56	0.05
	HEC-RAS	1646.740	PF 1	459.00	74.42	85.85		85.86	0.000035	0.95	481.17	42.20	0.05
	HEC-RAS	1526.990	PF 1	459.00	74.28	85.85		85.86	0.000034	0.94	486.91	42.20	0.05
	HEC-RAS	1407.250	PF 1	459.00	74.15	85.84		85.86	0.000033	0.93	492.25	42.20	0.05
	HEC-RAS	1287.510	PF 1	459.00	74.01	85.84		85.85	0.000031	0.92	498.81	42.26	0.05
	HEC-RAS	1252.250	PF 1	459.00	73.97	85.84		85.85	0.000031	0.91	502.85	42.48	0.05
	HEC-RAS	1216.990	PF 1	459.00	73.93	85.84		85.85	0.000030	0.91	505.63	42.59	0.05
	HEC-RAS	1181.720	PF 1	459.00	73.89	85.84		85.85	0.000030	0.91	506.94	43.53	0.05
	HEC-RAS	1146.460	PF 1	459.00	73.85	85.83		85.85	0.000030	0.90	507.85	42.48	0.05
	HEC-RAS	1111.200	PF 1	459.00	73.81	85.83		85.85	0.000030	0.90	510.37	42.56	0.05
	HEC-RAS	1075.940	PF 1	459.00	73.77	85.83		85.84	0.000029	0.90	511.13	42.48	0.05
	HEC-RAS	1040.680	PF 1	459.00	73.73	85.83		85.84	0.000029	0.89	513.82	42.58	0.05
	HEC-RAS	1005.420	PF 1	459.00	73.69	85.83		85.84	0.000029	0.90	512.02	42.28	0.05
	HEC-RAS	900.560	PF 1	459.00	73.57	85.83		85.84	0.000029	0.89	516.11	42.21	0.04
	HEC-RAS	795.690	PF 1	459.00	73.45	85.82		85.84	0.000028	0.88	521.14	42.22	0.04
	HEC-RAS	695.930	PF 1	459.00	73.34	85.82		85.83	0.000027	0.87	525.95	42.24	0.04
	HEC-RAS	596.170	PF 1	459.00	73.23	85.82		85.83	0.000026	0.87	530.49	42.25	0.04
	HEC-RAS	496.410	PF 1	459.00	73.11	85.82		85.83	0.000026	0.86	535.46	42.25	0.04
CP \#2	HEC-RAS	306.960	PF 1	459.00	73.00	85.82	73.76	85.82	0.000002	0.30	1552.93	121.19	0.01
	HEC-RAS	304.96		Culvert									
	HEC-RAS	116.430	PF 1	459.00	73.00	85.20		85.21	0.000015	0.63	732.81	93.10	0.04
	HEC-RAS	66.170	PF 1	459.00	73.43	85.18		85.21	0.000089	1.20	382.59	69.27	0.09
	HEC-RAS	0.000	PF 1	459.00	74.00	85.17	77.80	85.20	0.000122	1.36	336.69	63.36	0.10

Option \#3 HEC-RAS Model

Appendix C. Historic Data

C.1. Application 960806-5: VWCD Canal C-5 Relocation @ SeaWorld

SOUTH FLORIDA WATER
MANAGEMENT DISTRICT

CONSTRUCTION COMPLETION/CERTIFICATION

PERMIT NUMBER:
\qquad
$48-00052-5$

APPLICATION NUMBER:
$960806-5$

VWCD Canal C5 Rewcation@ seaward

CON 24-06
Regulation Department
March 2, 1999
Valencia Water Control District 10365 Orangewood Boulevard Orlando, Florida 32821

Subject: Construction Completion/Construction Certification Environmental Resource Standard General Permit Permit No. 48-00052-S/Application No. 960806-5 VWCD CANAL C-5 RELOCATION @ SEA WORLD
Orange County, S12;7T24;24S/R28;29E Orange County, S12;7/T24;24S/R28;29E
Dear Sirs:
This letter is to acknowledge receipt of your consulting engineer's construction completion/ construction certification and the record drawings pertaining to the subject parcel's surface water management system. South Florida Water Management District (SFWMD) staff have reviewed the submitted information and it has been incorporated into the permit file.

By accepting the engineer's certification, SFWMD staff considers the surface water management system (permitted under the above listed application number) to be constructed in substantial conformance with the plans and specifications approved by the SFWMD. This satisfies your permit's conditions regarding submittal of an engineer's certification for construction completion of the permitted drainage facilities and the above referenced permit is hereby converted from the construction phase to the operation phase,

Should you have any questions, please contact Vickie Jones in the Orlando Service Center at (407) 858-6100.

Jared Justesen
Regulatory Representative
Orlando Service Center
JJ/vj
c: Orange County Development Engineering Department AR Miller Engineering, Inc.
vj0659

Govirning Board:

Frank Williamson, Jr., Chairman
Eugene K. Pettis, Viee Chairman
Mitchell iV. Berger

Vera M. Carter William E. Graham William Hammond

Richard A. Machek Michael D. Minton Miriam Singer

Samuel E. Poole III, Executive Director Michael Slayton, Deputy Executive Director William C. Stimmel, Orlando Service Center Director

District Headquarters • 3301 Gun Club Road, P.O. Box 24680, West Palm Beach, FL, 33416-4680 • (561) 686-8800, FL WATS 1-800-432-2045

Valencia Water Control Distric
 Marci 2, 1999

Fage 2
bc:
Heidi Schloss
Backup File
Reader File

Finial Inspection Orlando Service Center

Regulation

Date:22 Dec 98
Project Name: SWF Pond "6" Relocation
Permit No: 48-00052-S/960806-5
Project Enginear: AR Milller Engineering Inc.
Certification Letter Received?Yes

Date of Final Inspection:21 Dec 98

FINAL INSPECTION REPCRT

This permit is for the realignment of VWD'S canal C-5 on the Sea World property to better the land use for future construction. The submitted engineers certification and record drawings indicate construction has been done within a reasonable tolerance of design. Valencia Drainage District will maintain the system.

C:h schloss
File

SOIJTH FLORIDA WATER MANAGEMENT DISTRICT

Environmental Resource/Surface Water Management Permit Construclion Compiction/Construction Certification
 RECEIVED

PLRMIT NO. 48-00052-S ORLANDO SERVICE CENTER PROJECT NAME: VWCD Canal C-5 ReTocation APLICATION NO. -960806-5 LOCATION: COUNTY: Orange Relocation
The subjeci surface water management system has been designed, constructed and completed as follows:
(use
Completion Date:
Dischare Strucrure:

April,28, 1998		
Month	Day	Year
EERMITIED		EXISTING

Retentinn/Detention Area:
(if applicable)
N / A

Size
Side Slopes
$(H: V)$

ID Size Side Slopes $\overline{(H: V)}$

ID | Size |
| :--- |
| Side Slopes \quad |
| $\mathrm{H:V)}$ |

[D Size Side Slopes
(H:V)

Please indicate the location of the appropriate bench mark(s) used to determine the above information on the record drawings (Reference 40E-4.381(1)(1). Florida Administrative Code). All elevations should be the according to National Geodetic Verical Datum (NGVD) (Rerative Code). All elevations should be Environmental Resource Permit Applications whin (Reference 2.9 of the Basis of Review for
Environmental Resource Permit Applications within the So:th Florida Water Management District).

I HERERY NOTIFY THE DISTRUCT OF THE COMPIETION OF CONSTRUCTION OF ALL THE COMPONENTS OF TH
THEY HUVE BEEN CONAGEMENT FACIITIES FOR THE ABOVE REFERENCED PROELCT AND CERTIFYTS OFTT THE PERMITIED BY TH DISTRCTED IN SUBSTANTLAL CONFORMUNCE WITH THE PLINS AND CERTIFY THAT DEVLATIONS NTED DISTRICT. AA COPY OF THE APPROVED PERMTT DRAFHNGS IS ATTAD SPECIFICAITONS

\qquad
\qquad 1998 .

Arthur R. Miller, III, PE, PLS PE 0026259
Name (Please Print) Fla. Registration No.

Appendix D. Additional Data

D.1. HEC-RAS Hydraulic Reference Manual Table 3-1: Manning's n Values
associated with bridges and culverts will be discussed in "Modeling Bridges" 28 and "Modeling Culverts" 29 of this manual.

Manning's \mathbf{n}. Selection of an appropriate value for Manning's n is very significant to the accuracy of the computed water surface elevations. The value of Manning's n is highly variable and depends on a number of factors including: surface roughness; vegetation; channel irregularities; channel alignment; scour and deposition; obstructions; size and shape of the channel; stage and discharge; seasonal changes; temperature; and suspended material and bedload.

In general, Manning's n values should be calibrated whenever observed water surface elevation information (gaged data, as well as high water marks) is available. When gaged data are not available, values of n computed for similar stream conditions or values obtained from experimental data should be used as guides in selecting n values.

There are several references a user can access that show Manning's n values for typical channels. An extensive compilation of n values for streams and floodplains can be found in Chow's book "Open-Channel Hydraulics" [Chow, 1959]. Excerpts from Chow's book, for the most common types of channels, are shown in Table 3-1 below. Chow's book presents additional types of channels, as well as pictures of streams for which n values have been calibrated.

5.1.6.1 Table 3-1 Manning's n Values

Type of Channel and Description	Minimum	Normal	Maximum
A. Natural Streams			
1. Main Channels		0.030	0.033
a. Clean, straight, full, no rifts or deep pools	0.025	0.035	0.040
b. Same as above, but more stones and weeds	0.030	0.040	0.050
c. Clean, winding, some pools and shoals d. Same as above, but some weeds and stones	0.033	0.035	0.055
e. Same as above, lower stages, more ineffective slopes and sections	0.040	0.050	0.060
f. Same as "d" but more stones	0.045		

[^0]| g. Sluggish reaches, weedy. deep pools | 0.050 | 0.070 | 0.080 |
| :---: | :---: | :---: | :---: |
| h. Very weedy reaches, deep pools, or floodways with heavy stands of timber and brush | 0.070 | 0.100 | 0.150 |
| 2. Flood Plains | | | |
| a. Pasture no brush | | | |
| 1. Short grass | 0.025 | 0.030 | 0.035 |
| 2. High grass | 0.030 | 0.035 | 0.050 |
| b. Cultivated areas | | | |
| 1. No crop | 0.020 | 0.030 | 0.040 |
| 2. Mature row crops | 0.025 | 0.035 | 0.045 |
| 3. Mature field crops | 0.030 | 0.040 | 0.050 |
| c. Brush | | | |
| 1. Scattered brush, heavy weeds | 0.035 | 0.050 | 0.070 |
| 2. Light brush and trees, in winter | 0.035 | 0.050 | 0.060 |
| 3. Light brush and trees, in summer | 0.040 | 0.060 | 0.080 |
| 4. Medium to dense brush, in winter | 0.045 | 0.070 | 0.110 |
| 5. Medium to dense brush, in summer | 0.070 | 0.100 | 0.160 |
| d. Trees | | | |
| 1. Cleared land with tree stumps, no sprouts | 0.030 | 0.040 | 0.050 |

2. Same as above, but heavy sprouts	0.050	0.060	0.080
3. Heavy stand of timber, few down trees, little undergrowth, flow below branches	0.080	0.100	0.120
4. Same as above, but with flow into branches	0.100	0.120	0.160
5. Dense willows, summer, straight	0.110	0.150	0.200
3. Mountain Streams, no vegetation in			
channel, banks usually steep, with trees and			
brush on banks submerged			

Use for Rectangular channel Condition.

2. Concrete bottom float finished with sides of:			
a. Dressed stone in mortar	0.015	0.017	0.020
b. Random stone in mortar	0.017	0.020	0.024
c. Cement rubble masonry, plastered	0.016	0.020	0.024
d. Cement rubble masonry	0.020	0.025	0.030
e. Dry rubble on riprap	0.020	0.030	0.035
3. Gravel bottom with sides of:			
a. Formed concrete	0.017	0.020	0.025
b. Random stone in mortar	0.020	0.023	0.026
c. Dry rubble or riprap	0.023	0.033	0.036
4. Brick			
a. Glazed	0.011	0.013	0.015
b. In cement mortar	0.012	0.015	0.018
5. Metal			
a. Smooth steel surfaces	0.011	0.012	0.014
b. Corrugated metal	0.021	0.025	0.030
6. Asphalt			
a. Smooth	0.013	0.013	
b. Rough	0.016	0.016	

b. Jagged and irregular	0.035	0.040	0.050
5. Channels not maintained, weeds and brush			
a. Clean bottom, brush on sides	0.040	0.050	0.080
b. Same as above, highest stage of flow	0.045	0.070	0.110
c. Dense weeds, high as flow depth	0.050	0.080	0.120
d. Dense brush, high stage	0.080	0.100	0.140

Other sources that include pictures of selected streams as a guide to n value determination are available (Fasken, 1963; Barnes, 1967; and Hicks and Mason, 1991). In general, these references provide color photos with tables of calibrated n values for a range of flows.

Although there are many factors that affect the selection of the n value for the channel, some of the most important factors are the type and size of materials that compose the bed and banks of a channel, and the shape of the channel. Cowan (1956) developed a procedure for estimating the effects of these factors to determine the value of Manning's n of a channel. In Cowan's procedure, the value of n is computed by the following equation:

$$
n=\left(n_{0}+n_{1}+n_{2}+n_{3}+n_{4}\right) m
$$

Symbol	Description	Units
n_{b}	Base value for n for a straight uniform, smooth channel in natural materials	
n_{1}	Value added to correct for surface irregularities	
n_{2}	Value for obstructions	
n_{3}	Value for vegetation and flow conditions	
n_{4}	Correction factor to account for meandering of the channel	
m		

Raul A. Rivera, PE
AtkinsRéalis,
482 South Keller Road
Suite 300
Orlando, FL 32810

Tel: +1 4076477275
Direct: +18132817346
Raul.Rivera@atkinsrealis.com

SECTION VII

SECTION A

Customer Call Log - Valencia Water Control District							
Date	Name	Subdivision	Address	Issue	Pond/Canal Name	Resolution	Date Resolved
11/20/23	Dennis McGowan	Parkview Pointe North	5665 Parkview Lake Drive	Called to inquire about the proposed development project Toscana and asked for District's boundary map. Concerned about flooding impact of new development.	N/A	Stacie V. explained that the property in question was outside of the District's boundaries and was not approved or controlled by the District. Any questions regarding the status of the project were to be directed to Orange County and provided the case planner's information to him. Emailed the District's boundary map to him	11/21/23

Section B

This item will be provided under

separate cover

[^0]: 28 https://www.hec.usace.army.mil/confluence/rasdocs/ras1dtechref/modeling-bridges 29 https://www.hec.usace.army.mil/confluence/rasdocs/ras1dtechref/modeling-culverts

